Measuring and Localizing Homology Classes
نویسندگان
چکیده
We develop a method for measuring and localizing homology classes. This involves two problems. First, we define relevant notions of size for both a homology class and a homology group basis, using ideas from relative homology. Second, we propose an algorithm to compute the optimal homology basis, using techniques from persistent homology and finite field algebra. Classes of the computed optimal basis are localized with cycles conveying their sizes. The algorithm runs in O(βn log n) time, where n is the size of the simplicial complex and β is the Betti number of the homology group.
منابع مشابه
Measuring and Localing Homology Classes
We develop a method for measuring and localizing homology classes. This involves two problems. First, we define relevant notions of size for both a homology class and a homology group basis, using ideas from relative homology. Second, we propose an algorithm to compute the optimal homology basis, using techniques from persistent homology and finite field algebra. Classes of the computed optimal...
متن کاملQuantifying Homology Classes
We develop a method for measuring homology classes. This involves three problems. First, we define the size of a homology class, using ideas from relative homology. Second, we define an optimal basis of a homology group to be the basis whose elements’ size have the minimal sum. We provide a greedy algorithm to compute the optimal basis and measure classes in it. The algorithm runs in O(βn log n...
متن کاملMeasuring and computing natural generators for homology groups
We develop a method for measuring homology classes. This involves two problems. First, we define the size of a homology class, using ideas from relative homology. Second, we define an optimal basis of a homology group to be the basis whose elements’ size have the minimal sum. We provide a greedy algorithm to compute the optimal basis and measure classes in it. The algorithm runs in O(βn3 log n)...
متن کاملO15: Lateralizing and Localizing Findings in Focal Epilepsies
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملm at h . G T ] 1 1 Ju l 1 99 5 QUASIGEODESIC FLOWS IN HYPERBOLIC THREE - MANIFOLDS
Any closed, oriented, hyperbolic 3-manifold with nontrivial second homology has many quasigeodesic flows, where quasigeodesic means that flow lines are uniformly efficient in measuring distance in relative homotopy classes. The flows are pseudo-Anosov flows which are almost transverse to finite depth foliations in the manifold. The main tool is the use of a sutured manifold hierarchy which has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007